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Abstract

4 This article describes a general method for discriminating between two

random variables when we are required to use a discriminant function belong-

ing to a given class.

til



Contents

Abstract i

1. Introduction1

II. Necessary Conditions for k hOrder Solutions 2

111. Some remarks on the Normal Distribution 6

IV. Third Order Solution for the Optimal Linear Discriminant 12

Footnotes 18

Re ferences 19

Vv



I. Introduction

In this note we consider the "two class" problem of statistical classifi-

cation: We are given two random variables, X and X , taking values in Rd to-
1 2

* gether with some (usually incomplete) information about their distributions.

We assume occurrences of type 1(X ) and of type 2(X ) are mutually exclusive1 2

and have prior probabilities of a and 1-a respectively (0 < a < 1). If x is

observed how do we decide if x is of type 1 or of type 2 in such a fashion as

to minimize the probability of making an incorrect decision?

If the probability densities of X and X 2, p (y) and p 2(y), were known

we would decide by using the likelihood ratio test:

StP(x) > type 2
2

(1- (x) < type 1

Unfortunately in many practical situations (good estimates of the probability

densities are unavailable. However (good estimates of) other statistics are

available (lower order moments, spectral estimates, features, etc.). These

enable one to construct a family of discriminant functions L whose errors may

be (estimated) calculated from the (estimated) known statistics. We give a

formal definition of a discriminant function and its error as follows.

Def. I A discriminant function L is a mapping L: R d R. The

error of L (relative to the above classification prob-

L
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lem) is the infimum over all real t of the expected

probability of error of the decision rule -

L (z) > t type 2

L (z) < t type 1

The error of L is given by the expression

inf P+(-) LX Is
0< t < + [ [ Prob L(X) > tI + (1-a) Prob 2L(X 2 < t

Given a class of discriminants L our goal is to find an L e L of minimum

error. In II we will assume that the distributions of L e L under each hypoth-

esis may be parametrized by k parameters. Necessary conditions for minimum

w. error will be derived. In III certain properties of the normal distribution

relative to the framework of II will be discussed. Finally a third order

solution for the optimal linear discriminant will be given in IV.

II. Necessary Conditions for kth Order Solutions

Let P be a class of continuous probability densities on the real line

parametrized by their means, variances, third moments,.. ,kth moments about

1 2 3 kthe mean (v, v v , v We assume further that D is a location

family: (v u v2 , v 3, ... ,v) (x)= (v1, v2 , v 3  ... ,v k) (x+ ul)
z 3 k

Consider any two densities p(O, v v . .... v ) and p =
2 1 1 1 2 2

(1, v ,..., v k). Let E (pl, ) = E (p(O, v 1...), p(l, v ,...) be the2 2 a i 2 a ' 2

error of the identity discriminant function in R (for the two class problem

with densities p , 1 ).
1 2

I. *See Footnote (1) on page 18.
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t + C

E 0 21 t { (I-)f dx+a f pl dx}
-. an t

Assume further that E (u , p0 ) = E (v 2, v v k 2 v k,2. ., v;V , , , ., V )
" 1 1 2 2 2

k
has continuous partials wrt v 2v , ** 21 1 2

Def. 2 D is said to have monitone error at the pair (p , p 2

if E 01(v 12, 3 ... , v k has a non-vanishing gradient1 1 2
2 3 k

at v I , vkI  v 2

Let AcRq be some parameter space and let L = {L(); a E A} be a family

I of discriminant functions with

E (L(a)) - E (L()) = 1 for all a.

Suppose the probability density of L(a) under each hypothesis lies in D and

2Vk( V 2
the mapping A4. E (v 2 (a) ....... vICa); va a) .... v2 '()) has partial

theh

derivatives of the first order. (v (a) is the k moment about

the mean of the random variable L(t) under hypothesis i.)

Theorem 1 Let D have monotone error at C IO, v 2C ,), ... v (a' )),
V(1, V 2 ( k( k(.) 2 _)) ....

a'), ..., v Ca')). If E (v (a), ..., V Ca);
k 4

v a)) has a local minimum at a', then a' is a critical point of
2
2

i=1 J-2 ai vi (a) for some set of 2(k-l) real numbers ( (not all 0)
wih i < +1I If E Cv .. k)

With -1<, .. v 2 is strictly concave (as a function
2 k 2 N k a0.

of , ... v ) at v a), ..., v C), then the above critical point a'1 2 1

z k 81j vj4
is a strict local minimum of E £ 8 v (a).

i-I J-2

3
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Proof Taking partial derivatives of E wrt a at a we have
(% r

aa
i=l j= vri1'

k . 2 __4_

Since tie gradient of EA wrt v 2, ... v is non-zero at v (a) we may set

( 1 2 k1,,i _ ' 2 I

' a, ) = j=2 av 4 , )
2 k

"hen a is a critical point Of I 1'2 .

Sups vzk) V k(

Suppose E (v 1.... v ) is strictly concave at v ( ) ... a v )." 1 2 1 2

Since the partial derivatives of E wrt IJ are continuous, E C(v 1 2,  v2 k
k )

2 _+1 k -*has a differential at v (a') .... v (a ). Hence for any direction u
1 2

(dI = 1), -- grad E 4 .)*. Bv strict concavity E (vi a +aa

u a )v )) < p(grad E J_ 4 S for p sufficiently small, but pos-
a

itive. Hence for a sufficiently close to a', but unequal a,

S (a)) - Vi (a )) = E (v ( ) + (vi

j 2 k(aE 1 c
- E (vj(a') < -----. , v - v (ai=1 j--2\3v i a ii

2 k
Hence a is a strict local minimum of 2 2 i v i ( 'a

1=1 j=2

4
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The preceding theorem allows us to reduce the parameters in our problem

from q to 2(k-l) as follows: For any choice of reals 8 i -i < < 1 we
k

find a set of critical points A($i of v v (a). Then the L C L of
1=l j=2

minimum error is in the set

11{(a) : ICA(. 1), -1 < a < 11.

For each such L in the above set we (estimate) calculate the error from (per-

formance on sample data) knowledge of the densities in D. The L of minimum

erroris then found by a numerical search in the 2(k-i) dimensional set de-

scribed by the 8iJ . Knowledge that the above critical points are indeed

strict local minima may be extremely useful for numerical purposes since the2 k a 'number of critical points of 2 k iJv l (a) may be prohibitively large

i=l J=2
but the number of strict local minima computationally feasible. This will be

the case in IV. Hence the concavity condition may be extremely important.

For this reason we discuss the strict concavity of E (v 1, v 2) for k2 and
S 1 2

the set of normal distributions in III.

For the case k = 2 (second order solution) we may reduce our problem to

one with a single parameter: determine critical points of 6v 2(s) + (- 181)v 2(a)

for -1 < 8 < + 1. This was shown in (1) and (2) and applied to various

classes of discriminant functions.

The above results are completely analogous when un parametrize D by

statistics other than moments. The choice of such statistics will influence

a thconsiderably the performance of a k order solution.

-N 1-_5
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III. Some Remarks on the Normal Distribution

Let D be the 2-parameter class of normals. For convenience denote the

2 2two variance parameters, v I and v 2 by w and z respectively. Let1 2

+00 Ot 2 C i- _ 1
Ec (w, z) = f exp - dx + f exp ) dx
a c dx -f 2z

Then

E C(w, z) =inf E c (w, z)

c

where 2  (1 1 (log +i

c(wZ,z) z- - w (1- w Z for z w
1 1)

2(l

z w

c(w, z) = . log a + 2 for z = w2 TIV 2

The function c(w, z) has a Taylor expansion about any point of the form (w, w).

(w > 0) Hence c(w, z) has continuous partial derivatives of the first order

in z and w. It represents the smaller root of the equation atv(Ow)=(l--a)P(l,z)

for z < w, the larger root for z > w, and the only root for z = w.

Lemma I E (w, z) has continuous partial derivatives of the first order

given by the formulae

a E-+ 0 0 ) [ % / w- x
-Ea =  cf  a exp x 2w-)]dx

c(w9 Z) _9w- w2

6
1
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aEL c(w, Z) a r ___ O ex (Xl2

az w_ -Iexp dx

Proof: From the formulae for aw and 3z it follows that the deriva-

tives are continuous in w, z. Hence we need only derive the formulae. We

aE L E
derive the expression for a -5- is derived analogously. Consider

E c(w', z) _ E c(w, z)

wa aw' -w

1 -f exp 2w'exp w( dx
w- w c(w, z) 2w'

+ 1 C(wq z) e x (2 _ (1-_a) ex -(x-')1 dx
+ '-w c(w', z) 2w' N/

For E-> 0 and w' sufficiently close to w, the integrand in the second term of

the previous expression will be of magnitude less than C. Hence the second

term is bounded in absolute value by

Ic(w', z) - c(w, z)I E which converges to lci as w' w. Since e

1w' - wl aw

was arbitrary the second term converges to zero and the first term converges

I. to the desired expression.

"N 2. 7



Lemma 2 D has monotone error at each pair (w, z)

Proof: for fixed w, z

X2 X2

aE + OD 2 - -x

ff A f (EL e -w - e 2W dx
aw c(w, z) w

E - c(w, Z) (x-l) 2  (x-l) 2

B -(z e 2Z -e ) dx

where A and B are non-zero. The first integral vanishes only if

c(w, z) = 0 and the second only if c(w, z) = 1. Hence both partial de-

rivatives are not simultaneously zero.

Theorem 2 Ea(w, z) is strictly concave in the region described by

the inequalities

0 < c(w, z) < 1

w > 5 (w, z)2

31 r12
z >- il-c(w, z) 2

Proof: let ( , 2) lie in the above open region. We will show that E

is strictly concave in a neighborhood of (, 2). There are

neighborhoods N of c(, 2) and A of (, 2) such that for any

c E N and (w, z) c A

.-

8



1 c 2

3

z > - (1-c)
2

3

Choose a neighborhood of (0, Z), A' c A, such that c(w, z) c N for all

(w, z) C A'.

In A'

E(w, z) -inf E Cc (w, z) = inf E c (w, z) = E c(w, Z)(w, z).
c cCN

Now it may be easily shown that the infimum of a collection of strictly con-

cave functions, defined in a common open domain, is strictly concave in that

domain provided the infimum is assumed at. each point in the domain by some

element in the collection. Hence we need only show that E C(w, z) is strictly

concave in A' for all c C N.

*We have
-. +X2  X2

c a r 2 F
* E (w, z) = - J e dx + (l-a) I- e- dx

aE 
c

-1--. -z

3 2

aEc - c2

a acw 2 w
aw 2V -

72
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_a1 3 1 -1c)2

az (2 -a)( -c)z 2 2 zaz 2V4T

a2-7 _ (1 _ C) 2

a (1-c)(1 -a)z e z ((-c)2 -3z)

az 4 v27T

a EC4 /

awaz 0
a~aC

Since the second partials wrt w and z are negative in A, E c is strictly con-

cave.

By inspection of the second partials in the preceding proofs one deter-

minesimmediately two other regions of strict concavity:

c<0 c> 1

w < 3 and w >12
1 2

Z 1 (l -C )2z < (1 -C)2

Corollary 1 Let L = {L(a); a c A) be a family of discriminant functions

with the properties of section II whose densities are the two
2

parameter family of normals. For convenience denote v I (a),1

v 2(a) by w(a), z(a?) respectively. If a is a local minimum

of E (w(a), z(a)) satisfying

N10
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4.2
z(a ) > 3

thnais a strict local minimum of Bv(a) + (Il-8)z()frsm

Proof Since Ea is strictly concave at (w(a) &')byTrm2 a is

a strict local minilmum of some weighted sum of v() and z(-a) ,

82 W (a) + 82 za. Lt cva )z (_a') From Lemma 1
9 1 2

a a

a a

From the formulae in the proof of Theorem 2 these partial deriva-

tives are both positive. Hence 8 2 -8 and 8 2 - 1 -0 for some

0 < 8 < 1 from the formulae for 83 in the proof of Theorem 1.i

E'a) za). Lt be the probability of error of type

4.g1> 
Ai frL' -L(a-). (c -Prob, (L' c ) Prob WL < 8

The if E satisfies the inequalities

.5 > c > f 1 e 2 dx (z .04),

1.4 N
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ais a strictiocal minimum of 8w (a) + (1-) z (Z) for

some 0 < 8 < 1.

Proof Since the error probabilities of each type are less than

0O< ^<l1. Also

00 2

> f -- e2 dx. Hence w') > c ~ Similarly

44.

mum of av(a ) + (I1-$) Z(a) for some 0 < 8 < 1.

IV. Third Order Solution for the Optimal Linear Discriminant

Suppose x,, x 2' ... ', are uncorrelated real random variables under each

hypothesis with

E (x) 0

E 2(x )

E (xi2)
ii

E ((xi 1)
2 ) 2

12



In practical situations this can be achieved by applying the appropriate af-

fine transformation to the data.

dd
Let a, ., + (I- Z a ) x ai real(. Finding L C L of minimum

2

error is equivalent (in the third order sense) to finding critical points of

d d d d
2 E 1( ai xi + (1- Y, ai) x 1)2 + 2 2 E (2Z a i(x -1) + (1- Z a )(xl))2

1 2 ii2 2 2 2 2 i

d d d d
+8 3 E ( a x + (1- 2 a) x + 8 E (2 a (x -1) + (1- Za )(X-l))

1 1 2 22 2 21 1

for various values of J , -1 < 8i + 1. This objective function is a cubic

in d- 1 variables and possesses in general 2
d - 1 critical points. However -

Lema 3 Let f be a cubic in d- I dimensions. Then f has at most one

strict local minimum.

Proof: Suppose f has two strict local minima, it and 0. Then f restricted to

the line {a x + (1-a) y; - < a < + -} has strict local minima

at a- 0 and a- 1. But the restriction of f is a cubic in one

dimension which has at most one strict local minimum.

Suppose Ea is strictly concave at the values of the four parameters cor-

responding to the L £ L of minimum error. Then, by the preceding lemma, we

need to determine at most one point in the domain of the objective function

for each choice of . In general the method of steepest descent will not

yield a strict local minimum of a cubic since the cubic approaches both t

13
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far from the origin. However, if 8 and 8 2 are both positive and the skew-
2

nesses of the minimum L are small compared to the variances of that L, then

the method of steepest descent may be used by starting at A0 which minimizes

d d
2 E (2 a i x i + (1 l a X )2

22

d d
+ 8 2 E 2 ai (x -1) + (1- 12 a )(x -l))2

2 2 i 2

This is given by

(X ' + m )(8 2 X i + a 2 X i)1

1 2 1 1 2 2

f. aoi dI + (0 1 + l ) 1 Z 2 x + 8 2 1 ) -

1 2 S=2 1 1 2 2

In other words we start at a (potential) second order solution and use

steepest descent to find a (potential) third order solution.

If E (xixjxk) = E (xi-l)(xj-1)(xk-l) = 0 except when i-j k, the

strict local minima of the above cubics may be explicitly determined under

very mild restrictions. Let us assume throughout that 8 2 > 0 and 8 2 > 0.
1 2

Our objective function becomes:

= d 2 2 i 2 d 2 2 1 + a 1
ll 2aa(8* )~i + 8 X + (i- 2 a ) (81 Xf + 82 X21)+

2, a 1 2 2 2 1 1 2 22, 2
*See Footnote (2) on page 18.

I 14



d d
+ 1aS(8 3 E (xi3 ) + 2 E(xi-l)3 ) + (1- 1ai)8 E (x ) + 8 2 E (x -I) )

2 l 1 2 2 2 1 2 21

d d d 2 d

YAiai2 + B a +A (1- . a) +B (l- a)
2 2 2 2

T4

A strict local minimum of H, a, corresponds to a critical point (c,9) of

d d d
K(c,4-) Ai ci2 

+ Bi ci3 - ( cil)

where is a Lagrange multiplier and

d
1- Z ai c a - , • , c.

2 1 2 2 d d

Recall A > 0 since B 2 > 0, 8 2 > 0. Differentiating K wrt ci and setting
1 2

the result equal to zero yields

2A i +3B i ci2 =

We attempt to solve the above system for 0 < < Omax subject to the con-

d
straint ci -1 where

1

A mi 2  2t

_.mL i; Bi< 0 31Bil 31Bil

*See Footnote (3) on page 18.

L 15
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taking c i to be the smallest positive root. For a given 4),

-2Ai + 4A + 12 BI

6B i

, B =0

2Ai

Theorem 3 The system 2Ai ci + 3Bi c1
2 -b has a solution of smallest positive

roots for positive 4) with the roots summing to one provided

d -2A + V4A + 4B, A i

1 6Bi

In addition the corresponding a is a strict local minimum of H.

Proof: For 4) close to zero the sum of the roots will be less than one.

For 4 =(b the sum of the roots is greater than 1 by the con-
max

dition of the theorem. By the mean value theorem there is cb

such that the corresponding roots sum to one.

Since (c, 0) is a critical point of K, the corresponding a crit-

ical point of H. Hence VH is zero at a. To show that a is a

*See Footnote (4) on page 18.

16
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strict local minimum we compute the Jacobian of H at a and show that

it is positive definite:

d
a 2  

- 2Ai + 64i ai + 2A + 6B (1l- ai)

ai 1 2

%F4 A + 12 Bi4b + N14A; + 12 B (b

., IE

2A + 6B (I- 2 ai)= 1 4A 2 +12 B for i j.

aa i aa 1 2 1 1

I.

Since b < b all the radical terms are positive. Hence J(H) =
max

A + SI where A is a diagonal matrix with positive eigenvalues andsl

is a matrix whose entries are a positive constant. Clearly such a

matrix is positive definite. This completes the proof.

1
L .
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Footnotes

(1) In some cases one uses as a measure of error the probability of mis-

classification of one type given the probability of misclassification

of the other. For such an error function the results of II remain

valid. The results of III and IV in this setting will be discussed

in a future paper.

(2) For 1 2 , this second order solution is known as the Fisher

line.

(3) If there are negative B.'s, ma is the largest 0 for which each

quadratic has a solution. If there are no negative Bi s, we set

a = + -. Clearly each quadratic has a solution for 0 < 0 <0.
maxmx

(4) If Bi f 0 the i'th term is replaced by 4 max If all Bi are non-
2Ai

negative the theorem holds without the inequality.

18
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